Modular glycosphere assays for high-throughput functional characterization of influenza viruses
نویسندگان
چکیده
BACKGROUND The ongoing global efforts to control influenza epidemics and pandemics require high-throughput technologies to detect, quantify, and functionally characterize viral isolates. The 2009 influenza pandemic as well as the recent in-vitro selection of highly transmissible H5N1 variants have only increased existing concerns about emerging influenza strains with significantly enhanced human-to-human transmissibility. High-affinity binding of the virus hemagglutinin to human receptor glycans is a highly sensitive and stringent indicator of host adaptation and virus transmissibility. The surveillance of receptor-binding characteristics can therefore provide a strong additional indicator for the relative hazard imposed by circulating and newly emerging influenza strains. RESULTS Streptavidin-coated microspheres were coated with selected biotinylated glycans to mimic either human or avian influenza host-cell receptors. Such glycospheres were used to selectively capture influenza virus of diverse subtypes from a variety of samples. Bound virus was then detected by fluorescently labelled antibodies and analyzed by quantitative flow cytometry. Recombinant hemagglutinin, inactivated virus, and influenza virions were captured and analyzed with regards to receptor specificity over a wide range of analyte concentration. High-throughput analyses of influenza virus produced dose-response curves that allow for functional assessment of relative receptor affinity and thus transmissibility. CONCLUSIONS Modular glycosphere assays for high-throughput functional characterization of influenza viruses introduce an important tool to augment the surveillance of clinical and veterinarian influenza isolates with regards to receptor specificity, host adaptation, and virus transmissibility.
منابع مشابه
Assessment of a rapid immunochromatographic assay for the detection of avian influenza viruses
Rapid spreading of the low pathogenic avian influenza virus (AIV) caused by the H9N2 subtype and the highly pathogenic AIV caused by H5N1 have caused serious economic losses in the poultry industries of Asia. Therefore, the early detection of AIVs is crucial for the control of the disease. In the present study, the applicability of a rapid immunochromatographic (RIC) assay, which specifically d...
متن کاملMolecular Characterization and Phylogenetic Analysis of Neuraminidase Gene in A/H1N1 Influenza Virus Isolates Circulating in Iran, 2014-2015.
Objectives: Influenza is one of the most important emerging and reemerging infectious diseases in the world. The aim of this study is molecular and phylogenetic analyses of the variations in circulating influenza A/H1N1 virus isolates during 2014-2015 in Iran and investigate on the drug resistance conditions in the related Iranian isolates. Material and Methods: Throat samples from Iranian pat...
متن کاملAssays for monitoring susceptibility of influenza viruses to neuraminidase inhibitors.
Close monitoring of drug susceptibility among human influenza viruses was necessitated by widespread resistance to M2 inhibitors in influenza H1N1 (pre-pandemic and 2009 pandemic) and H3N2 viruses, and of oseltamivir resistance in pre-pandemic H1N1 viruses. The FDA-approved neuraminidase (NA) inhibitors (NAIs), oseltamivir and zanamivir, as well as investigational NAIs, peramivir and laninamivi...
متن کاملMolecular and Phylogenetic Analysis and Protein Structural modeling of NS Gene of Human Influenza A Virus Subtype H1N1 Circulating in Iran 2015 & 2017
Abstract Background: The NS (non-structural) genomic segment of influenza A virus expresses two proteins (NS1 and NS2) which are responsible for the virulence and pathogenicity of virus. In this study we investigate the characterization and variability of the NS gene recovered from H1N1 influenza viruses isolated from Iranian patients during the 2017 seasonal outbreak and from high...
متن کاملDevelopment of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses
Background and objective:Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013